Efficiency of Quasi-Newton Methods on Strictly Positive Functions

author: Yurii Nesterov, Université catholique de Louvain
published: Jan. 13, 2011,   recorded: December 2010,   views: 543
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

In this talk we consider a new class of convex optimization problems, which admit faster black-box optimization schemes. For analyzing their rate of convergence, we introduce a notion of mixed accuracy of an approximate solution, which is a convenient generalization of the absolute and relative accuracies. We show that for our problem class, a natural Quasi-Newton method is always faster than the standard gradient method. At the same time, after an appropriate normalization, our results can be extended onto the general convex unconstrained minimization problems.

See Also:

Download slides icon Download slides: nipsworkshops2010_nesterov_eqn_01.pdf (1.2¬†MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: