Dual decomposition for inference in natural language processing

author: Terry Koo, Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, MIT
published: Jan. 13, 2011,   recorded: December 2010,   views: 626


Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography


There has been a long history in combinatorial optimization of methods that exploit structure in complex problems, using methods such as dual decomposition or Lagrangian relaxation. These methods leverage the observation that complex inference problems can often be decomposed into efficiently solvable subproblems. In this talk I’ll describe work on inference algorithms for NLP based on dual decomposition. I’ll describe work on two problems: 1) Non-projective dependency parsing, where the inference problem is NP-hard for all but the simplest models. 2) Problems that involve ‘‘intersections’’ of two or more dynamic programming problems. These problems are solvable in polynomial time, but in practice the intersected dynamic programs are far too large to be practical. The algorithms are simple and efficient, building on standard combinatorial algorithms (e.g., dynamic programming, minimum spanning tree) as oracles; they provably solve a linear programming relaxation of the original problem; and empirically they very often lead to an exact solution to the original problem. The work is related to recent methods that use dual decomposition as an alternative to belief propagation for inference in Markov random fields. This is joint work with Tommi Jaakkola, Terry Koo, Sasha Rush, and David Sontag.

See Also:

Download slides icon Download slides: nipsworkshops2010_koo_ddi_01.pdf (814.6 KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: