View order







Type of content

 
 
 
 
 
 

Language

 
 
 
 
 
 
 

Year

From:
To:

 


...Search a Keyword

 
 
event header image

New Directions in Multiple Kernel Learning

Research on Multiple Kernel Learning (MKL) has matured to the point where efficient systems can be applied out of the box to various application domains. In contrast to last year’s workshop, which evaluated the achievements of MKL in the past decade, this workshop looks beyond the standard setting and investigates new directions for MKL. In particular, we focus on two topics:

  1. There are three research areas, which are closely related, but have traditionally been treated separately: learning the kernel, learning distance metrics, and learning the covariance function of a Gaussian process. We therefore would like to bring together researchers from these areas to find a unifying view, explore connections, and exchange ideas.
  2. We ask for novel contributions that take new directions, propose innovative approaches, and take unconventional views. This includes research, which goes beyond the limited classical sumof- kernels setup, finds new ways of combining kernels, or applies MKL in more complex settings.

Taking advantage of the broad variety of research topics at NIPS, the workshop aims to foster collaboration across the borders of the traditional multiple kernel learning community.

Workshop homepage: http://doc.ml.tu-berlin.de/mkl_workshop/

Categories

Invited Speakers

Lectures

Poster Spotlights

Panel discussion

231 views, 25:11   Panel Discussion
flagPanel discussionPanel discussion
Guillaume Obozinski, Raquel Urtasun, et al. Guillaume Obozinski, Raquel Urtasun, Massimiliano Pontil, Kilian Q. Weinberger

Write your own review or comment:

make sure you have javascript enabled or clear this field: