Energy Minimization with Label costs and Applications in Multi-Model Fitting

author: Yuri Boykov, Department of Computer Science, University of Western Ontario
published: Jan. 13, 2011,   recorded: December 2010,   views: 7987


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


The a-expansion algorithm has had a significant impact in computer vision due to its generality, effectiveness, and speed. Until recently, it could only minimize energies that involve unary, pairwise, and specialized higher-order terms. We propose an extension of a-expansion that can simultaneously optimize ‘‘label costs’’ with certain optimality guarantees. An energy with label costs can penalize a solution based on the set of labels that appear in it. The simplest special case is to penalize the number of labels in the solution, but the proposed energy is significantly more general than this. Usefulness of label costs is demonstrated by a number of specific applications in vision (e.g. in object recognition) that appeared in the last year. Our work (see CVPR 2010, IJCV submission) studies label costs from a general perspective, including discussion of multiple algorithms, optimality bounds, extensions, and fast special cases (e.g. UFL heuristics). In this talk we focus on natural generic applications of label costs is multi-model fitting and demonstrate several examples: homography detection, motion segmentation, unsupervised image segmentation, compression, and FMM. We also discuss a method (PEARL) for effective exploration of the continuum of labels -an important practical obstacle for a-expansion in model fitting. We discuss why our optimizationbased approach to multi-model fitting is significantly more robust than standard extensions of RANSAC (e.g. sequential RANSAC) currently dominant in vision.

See Also:

Download slides icon Download slides: nipsworkshops2010_boykov_eml_01.pdf (5.8 MB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: