Probabilistic Control in Human Computer Interaction

author: Roderick Murray-Smith, University of Glasgow
published: Jan. 19, 2010,   recorded: December 2009,   views: 4250


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Continuous interaction with computers can be treated as a control problem subject to various sources of uncertainty. We present examples of interaction based on multiple noisy sensors (capacitive sensing, location- and bearing sensing and EEG), in domains which rely on inference about user intention, and where the use of particle filters can improve performance. We use the "H-metaphor" for automated, flexibly handover of level of autonomy in control, as a function of the certainty of control actions from the user, in an analogous fashion to 'loosening the reins' when horse-riding. Integration of the inference mechanisms with probabilistic feedback designs can have a significant effect on behaviour, and some examples are presented. (Joint work with John Williamson, Simon Rogers and Steven Strachan).

See Also:

Download slides icon Download slides: nipsworkshops09_murray_smith_pchci_01.pdf (1.4┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: