View order

Type of content







...Search a Keyword

event header image

Language Learning

Grammar Induction, Representation of Language and Language Learning

Now is the time to revisit some of the fundamental grammar/language learning tasks such as grammar acquisition, language acquisition, language change, and the general problem of automatically inferring generic representations of language structure in a data driven manner. Though the underlying problems have been known to be computationally intractable for the standard representations of the Chomsky hierarchy, such as regular grammars and context free grammars, progress has been made by modifying or restricting these classes to make them more observable. Generalisations of distributional learning have shown promise in unsupervised learning of linguistic structure using tree based representations, or using non-parametric approaches to inference. More radically, significant advances in this domain have been made by switching to different representations such as the work in Clark, Eyrand & Habrard (2008) that addresses the issue of language acquisition, but has the potential to cross-fertilise a wide range of problems that require data driven representations of language. Such approaches are starting to make inroads into one of the fundamental problems of cognitive science: that of learning complex representations that encode meaning. This adds a further motivation for returning to this topic at this point. Grammar induction was the subject of an intense study in the early days of Computational Learning Theory, with the theory of query learning largely developing out of this research. More recently the study of new methods of representing language and grammars through complex kernels and probabilistic modelling together with algorithms such as structured output learning has enabled machine learning methods to be applied successfully to a range of language related tasks from simple topic classification through parts of speech tagging to statistical machine translation. These methods typically rely on more fluid structures than those derived from formal grammars and yet are able to compete favourably with classical grammatical approaches that require significant input from domain experts, often in the form of annotated data.

The Workshop homepage can be found at

[syn]  6329 views, 25:07  
flagSparsity in Grammar InductionSparsity in Grammar Induction
Jennifer A. Gillenwater Jennifer A. Gillenwater
comments1 comment 
2479 views, 07:14  
lockedflagPoster SpotlightsPoster Spotlights
Kewei Tu, Edouard Gilbert, et al. Kewei Tu, Edouard Gilbert, Adam R. Teichert, Mehmet Ali Yatbaz, Valentin I. Spitkovsky, Oskar Kohonen

Reviews and comments:

Comment1 John Carry, October 17, 2022 at 4:30 a.m.:

Language learning is a lifelong process. It requires dedication, practice and patience. It's not easy, but it's worth the effort. There are many different ways to learn a language, from learning through immersion to using apps. There are also many different resources that can help you on your language journey. Learning a language can be a rewarding experience and is an exciting adventure just like if you are following Twitter handle you will know how exciting is getting your assignments written on time through online writers.

Comment2 Maximilian Hohenzollern, May 25, 2023 at 1:38 p.m.:

Learning languages is very useful. At least it helps to develop the brain and improve memory. I try to regularly study with a tutor, and in my free time I learn new words and study grammar . Thanks to online resources, even textbooks are not needed, there is a lot of high-quality educational material.

Write your own review or comment:

make sure you have javascript enabled or clear this field: