Generative and Discriminative Models in Statistical Parsing

author: Michael Collins, Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, MIT
published: March 26, 2010,   recorded: December 2009,   views: 6679


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Since the earliest work on statistical parsing, a constant theme has been the development of discriminative and generative models with complementary strengths. In this work I’ll give a brief history of discriminative and generative models in statistical parsing, focusing on strengths and weaknesses of the various models. I’ll start with early work on discriminative history-based models (in particular, the SPATTER parser), moving through early discriminative and generative models based on lexicalized (dependency) representations, through to recent work on conditional-random-field based models. Finally, I’ll describe research on semi-supervised approaches that combine discriminative and generative models.

See Also:

Download slides icon Download slides: nipsworkshops09_collins_gdmsp_01.pdf (253.6 KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: