Temporal Segmentation with Kernel Change-point Detection

author: Francis R. Bach, INRIA - SIERRA project-team
published: Jan. 19, 2010,   recorded: December 2009,   views: 4780
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We introduce a kernel-based method for change-point analysis within a sequence of temporal observations. Change-point analysis of an unlabeled sample of observations consists in, first, testing whether a change in the distribution occurs within the sample, and second, if a change occurs, estimating the change-point instant after which the distribution of the observations switches from one distribution to another different distribution. We propose a test statistic based upon themaximum kernel Fisher discriminant ratio as a measure of homogeneity between segments. We derive its limiting distribution under the null hypothesis (no change occurs), and establish the consistency under the alternative hypothesis (a change occurs). This allows to build a statistical hypothesis testing procedure for testing the presence of a change-point, with a prescribed false-alarm probability and detection probability tending to one in the large-sample setting. If a change actually occurs, the test statistic also yields an estimator of the change-point location. Promising experimental results in temporal segmentation of mental tasks from BCI data and pop song indexation are presented.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: