Prior Knowledge and Sparse Methods for Convolved Multiple Outputs Gaussian Processes

author: Mauricio Alvarez, School of Computer Science, The University of Manchester
published: Jan. 19, 2010,   recorded: December 2009,   views: 432
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

One approach to account for non-trivial correlations between outputs employs convolution processes. Under a latent function interpretation of the convolution transform it is possible to establish dependencies between output variables. Two important aspects in this framework are how can we introduce prior knowledge and how can we perform efficient inference. Relating the convolution operation with dynamical systems, we can specify richer covariance functions for multiple outputs. We also present different sparse approximations for dependent output Gaussian processes in the context of structured covariances. Joint work with Neil Lawrence, David Luengo and Michalis Titsias.

See Also:

Download slides icon Download slides: nipsworkshops09_alvarez_pksmcmogp_01.pdf (1.2┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: