Graphical Models via Generalized Linear Models

author: Eunho Yang, Department of Computer Science, University of Texas at Austin
published: Jan. 16, 2013,   recorded: December 2012,   views: 683
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Undirected graphical models, or Markov networks, such as Gaussian graphical models and Ising models enjoy popularity in a variety of applications. In many settings, however, data may not follow a Gaussian or binomial distribution assumed by these models. We introduce a new class of graphical models based on generalized linear models (GLM) by assuming that node-wise conditional distributions arise from exponential families. Our models allow one to estimate networks for a wide class of exponential distributions, such as the Poisson, negative binomial, and exponential, by fitting penalized GLMs to select the neighborhood for each node. A major contribution of this paper is the rigorous statistical analysis showing that with high probability, the neighborhood of our graphical models can be recovered exactly. We provide examples of high-throughput genomic networks learned via our GLM graphical models for multinomial and Poisson distributed data.

See Also:

Download slides icon Download slides: nips2012_yang_models_01.pdf (925.2┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: