High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity

author: Po-Ling Loh, Department of Statistics, UC Berkeley
published: Jan. 25, 2012,   recorded: December 2011,   views: 6737
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Although the standard formulations of prediction problems involve fully-observed and noiseless data drawn in an i.i.d. manner, many applications involve noisy and/or missing data, possibly involving dependencies. We study these issues in the context of high-dimensional sparse linear regression, and propose novel estimators for the cases of noisy, missing, and/or dependent data. Many standard approaches to noisy or missing data, such as those using the EM algorithm, lead to optimization problems that are inherently non-convex, and it is difficult to establish theoretical guarantees on practical algorithms. While our approach also involves optimizing non-convex programs, we are able to both analyze the statistical error associated with any global optimum, and prove that a simple projected gradient descent algorithm will converge in polynomial time to a small neighborhood of the set of global minimizers. On the statistical side, we provide non-asymptotic bounds that hold with high probability for the cases of noisy, missing, and/or dependent data. On the computational side, we prove that under the same types of conditions required for statistical consistency, the projected gradient descent algorithm will converge at geometric rates to a near-global minimizer. We illustrate these theoretical predictions with simulations, showing agreement with the predicted scalings.

See Also:

Download slides icon Download slides: nips2011_loh_nonconvexity_01.pdf (412.8┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: