Evaluating the inverse decision-making approach to preference learning

author: Alan Jern, Carnegie Mellon University
published: Sept. 6, 2012,   recorded: December 2011,   views: 2472
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Psychologists have recently begun to develop computational accounts of how people infer others' preferences from their behavior. The inverse decision-making approach proposes that people infer preferences by inverting a generative model of decision-making. Existing data sets, however, do not provide sufficient resolution to thoroughly evaluate this approach. We introduce a new preference learning task that provides a benchmark for evaluating computational accounts and use it to compare the inverse decision-making approach to a feature-based approach, which relies on a discriminative combination of decision features. Our data support the inverse decision-making approach to preference learning.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: