Structural equations and divisive normalization for energy-dependent component analysis

author: Jun-ichiro Hirayama, Graduate School of Informatics, Kyoto University
published: Sept. 6, 2012,   recorded: December 2011,   views: 2641
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Components estimated by independent component analysis and related methods are typically not independent in real data. A very common form of nonlinear dependency between the components is correlations in their variances or energies. Here, we propose a principled probabilistic model to model the energy- correlations between the latent variables. Our two-stage model includes a linear mixing of latent signals into the observed ones like in ICA. The main new fea- ture is a model of the energy-correlations based on the structural equation model (SEM), in particular, a Linear Non-Gaussian SEM. The SEM is closely related to divisive normalization which effectively reduces energy correlation. Our new two- stage model enables estimation of both the linear mixing and the interactions related to energy-correlations, without resorting to approximations of the likelihood function or other non-principled approaches. We demonstrate the applicability of our method with synthetic dataset, natural images and brain signals.

See Also:

Download slides icon Download slides: nips2011_hirayama_equations_01.pdf (409.3 KB)

Download article icon Download article: hirayama12nips.pdf (6.4 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: