en-de
en-es
en-fr
en-sl
en
en-zh
0.25
0.5
0.75
1.25
1.5
1.75
2
Manifold Tangent Classifier
Published on Jan 25, 20129245 Views
We combine three important ideas present in previous work for building classifiers: the semi-supervised hypothesis (the input distribution contains information about the classifier), the unsupervised
Related categories
Chapter list
Manifold Tangent Classifiers00:00
Key Idea00:16
Semi - Supervised Hypothesis - 101:00
Semi - Supervised Hypothesis - 201:15
Semi - Supervised Hypothesis - 301:19
Semi - Supervised Hypothesis - 401:21
Semi - Supervised Hypothesis - 501:25
Deep Learning - 101:29
Deep Learning - 201:40
Deep Learning - 301:54
Manifold Hypothesis - 101:57
Manifold Hypothesis - 201:58
Classification Manifold Hypothesis - 102:14
Classification Manifold Hypothesis - 202:19
Towards the MTC03:11
Auto - Encoders03:14
Contractive Auto - Encoders - 103:46
Contractive Auto - Encoders - 204:01
Contractive Auto - Encoders - 304:07
Contractive Auto - Encoders - 404:47
Contractive Auto - Encoders - 504:56
Contractive Auto - Encoders - 605:00
Contractive Auto - Encoders - 705:00
Contractive Auto - Encoders - 805:20
Contractive Auto - Encoders - 905:32
Manifold Learning - 105:58
Manifold Learning - 206:44
Manifold Learning - 307:18
Manifold Learning - 407:53
Tangent Distance08:09
Tangent Propagation - 108:51
Tangent Propagation - 209:10
Tangent Propagation - 309:22
Manifold Tangent Classifier - 109:32
Manifold Tangent Classifier - 209:38
Manifold Tangent Classifier - 309:43
Manifold Tangent Classifier - 410:07
Experiments - 110:26
Experiments - 210:27
Experiments - 310:36
Experiments - 411:08
Experiments - 511:24
Experiments - 611:36
Experiments - 712:18
Experiments - 813:45
Experiments - 914:42
Conclusion14:59