Global Analytic Solution for Variational Bayesian

author: Shinichi Nakajima, Nikon Corporation
published: March 25, 2011,   recorded: December 2010,   views: 148
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Bayesian methods of matrix factorization (MF) have been actively explored recently as promising alternatives to classical singular value decomposition. In this paper, we show that, despite the fact that the optimization problem is non-convex, the global optimal solution of variational Bayesian (VB) MF can be computed analytically by solving a quartic equation. This is highly advantageous over a popular VBMF algorithm based on iterated conditional modes since it can only find a local optimal solution after iterations. We further show that the global optimal solution of empirical VBMF (hyperparameters are also learned from data) can also be analytically computed. We illustrate the usefulness of our results through experiments.

See Also:

Download slides icon Download slides: nips2010_nakajima_gas_01.pdf (208.6 KB)

Download article icon Download article: nips2010_1082.pdf (231.1 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: