Learning to combine foveal glimpses with a third-order Boltzmann machine

author: Hugo Larochelle, Google, Inc.
published: Jan. 12, 2011,   recorded: December 2010,   views: 231
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We describe a model based on a Boltzmann machine with third-order connections that can learn how to accumulate information about a shape over several fixations. The model uses a retina that only has enough high resolution pixels to cover a small area of the image, so it must decide on a sequence of fixations and it must combine the "glimpse" at each fixation with the location of the fixation before integrating the information with information from other glimpses of the same object. We evaluate this model on a synthetic dataset and two image classification datasets, showing that it can perform at least as well as a model trained on whole images.

See Also:

Download slides icon Download slides: nips2010_larochelle_lcf_01.pdf (3.9┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: