Latent Factor Models for Relational Arrays and Network Data

author: Peter Hoff, Department of Statistics, University of Washington
published: Jan. 12, 2011,   recorded: December 2010,   views: 9516


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.

 Watch videos:   (click on thumbnail to launch)

Watch Part 1
Part 1 50:33
Watch Part 2
Part 2 58:00


Network and relational data structures have increasingly played a role in the understanding of complex biological, social and other relational systems. Statistical models of such systems can give descriptions of global relational features, characterize local network structure, and provide predictions for missing or future relational data.

Latent variable models are a popular tool for describing network and relational patterns. Many of these models are based on well-known matrix decomposition methods, and thus have a rich mathematical framework upon which to build. Additionally, the parameters in these models are easy to interpret: Roughly speaking, a latent variable model posits that the relationship between two nodes is a function of observed and unobserved (latent) characteristics, potentially in addition to contextual factors.

In this tutorial I give an introduction to latent variable models for relational and network data. I first provide a mathematical justification for a general latent factor model based on exchangeability considerations. I then describe and illustrate several latent variable models in the context of the statistical analysis of several network datasets. I also compare several such models in terms of what network features they can, and cannot, represent.

A particularly flexible class of models are the "latent factor" models, based on singular value and eigen-decompositions of a relational matrix. These models generalize in a natural way to accommodate more complicated relational data, such as datasets that are described by multiway arrays, such as a network measured over time or the measurement of several relational variables on a common nodeset. I will close the tutorial by showing how tools from multiway data analysis (such as the higher order SVD and PARAFAC decomposition) can be used to build statistical models of multiway networks and relational data.

See Also:

Download slides icon Download slides: nips2010_hoff_lfm_01.pdf (1.1┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: