High-dimensional Statistics: Prediction, Association and Causal Inference

author: Peter Bühlmann, ETH Zurich
published: Jan. 12, 2011,   recorded: December 2010,   views: 13098


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.

 Watch videos:   (click on thumbnail to launch)

Watch Part 1
Part 1 1:12:22
Watch Part 2
Part 2 49:51


This tutorial surveys methodology and theory for high-dimensional statistical inference when the number of variables or features greatly exceeds sample size. Particular emphasis will be placed on problems of model and feature selection. This includes variable selection in regression models or estimation of the edge set in graphical modeling. While the former is concerned with association, the latter can be used for causal analysis. In the high-dimensional setting, major challenges include designing computational algorithms that are feasible for large-scale problems, assigning statistical error rates (e.g., p-values), and developing theoretical insights about the limits of what is possible. We will present some of the most important recent developments and discuss their implications for prediction, association analysis and some exciting new directions in causal inference.

See Also:

Download slides icon Download slides: nips2010_buhlmann_hds.pdf (2.7 MB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: