Online Classification with Specificity Constraints

author: Andrey Bernstein, Technion - Israel Institute of Technology
published: March 25, 2011,   recorded: December 2010,   views: 160
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We consider the online binary classification problem, where we are given m classifiers. At each stage, the classifiers map the input to the probability that the input belongs to the positive class. An online classification meta-algorithm is an algorithm that combines the outputs of the classifiers in order to attain a certain goal, without having prior knowledge on the form and statistics of the input, and without prior knowledge on the performance of the given classifiers. In this paper, we use sensitivity and specificity as the performance metrics of the meta-algorithm. In particular, our goal is to design an algorithm which satisfies the following two properties (asymptotically): (i) its average false positive rate (fp-rate) is under some given threshold, and (ii) its average true positive rate (tp-rate) is not worse than the tp-rate of the best convex combination of the m given classifiers that satisfies fp-rate constraint, in hindsight. We show that this problem is in fact a special case of the regret minimization problem with constraints, and therefore the above goal is not attainable. Hence, we pose a relaxed goal and propose a corresponding practical online learning meta-algorithm that attains it. In the case of<br />two classifiers, we show that this algorithm takes a very simple form. To our best knowledge, this is the first algorithm that addresses the problem of the average tp-rate maximization under average fp-rate constraints in the online setting.

See Also:

Download slides icon Download slides: nips2010_bernstein_ocs_01.pdf (193.5 KB)

Download article icon Download article: nips2010_0226.pdf (141.4 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: