Time-rescaling Methods for the Estimation and Assessment of Non-Poisson Neural Encoding Models

author: Jonathan Pillow, University of Texas at Austin
published: Jan. 19, 2010,   recorded: December 2009,   views: 357


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Recent work on the statistical modeling of neural responses has focused on modulated renewal processes in which the spike rate is a function of the stimulus and recent spiking history. Typically, these models incorporate spike-history dependencies via either: (A) a conditionally-Poisson process with rate dependent on a linear projection of the spike train history (e.g., generalized linear model); or (B) a modulated non-Poisson renewal process (e.g., inhomogeneous gamma process). Here we show that the two approaches can be combined, resulting in a {\it conditional renewal} (CR) model for neural spike trains. This model captures both real and rescaled-time effects, and can be fit by maximum likelihood using a simple application of the time-rescaling theorem [1]. We show that for any modulated renewal process model, the log-likelihood is concave in the linear filter parameters only under certain restrictive conditions on the renewal density (ruling out many popular choices, e.g. gamma with $\kappa \neq1$), suggesting that real-time history effects are easier to estimate than non-Poisson renewal properties. Moreover, we show that goodness-of-fit tests based on the time-rescaling theorem [1] quantify relative-time effects, but do not reliably assess accuracy in spike prediction or stimulus-response modeling. We illustrate the CR model with applications to both real and simulated neural data.

See Also:

Download slides icon Download slides: nips09_pillow_trme_01.ppt (1.8┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: