Fast Learning Rates for Support Vector Machines

author: Ingo Steinwart, Los Alamos National Laboratory
published: Feb. 25, 2007,   recorded: October 2005,   views: 266
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We establish learning rates to the Bayes risk for support vector machines with hinge loss (L1-SVM's). Since a theorem of Devroye states that no learning algorithm can learn with a uniform rate to the Bayes risk for all probability distributions we have to restrict the class of considered distributions: in order to obtain fast rates we assume a noise condition recently proposed by Tsybakov and an approximation condition in terms of the distribution and the reproducing kernel Hilbert space used by the L1-SVM. For Gaussian RBF kernels with varying widths we propose a geometric noise assumption on the distribution which ensures the approximation condition. This geometric assumption is not in terms of smoothness but describes the concentration of the marginal distribution near the decision boundary. In particular we are able to describe nontrivial classes of distributions for which L1-SVM's using a Gaussian kernel can learn with almost linear rate.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: