Large-Scale Semi-Supervised Learning

author: Jason Weston, NEC Laboratories America, Inc.
published: Nov. 26, 2007,   recorded: September 2007,   views: 5754


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Labeling data is expensive, whilst unlabeled data is often abundant and cheap to collect. Semi-supervised learning algorithms that can use both types of data can perform significantly better than supervised algorithms that use labeled data alone. However, for such gains to be observed, the amount of unlabeled data trained on should be relatively large. Therefore, making semi-supervised algorithms scalable is paramount. In this work we discuss several recent techniques for improving the scaling ability of these algorithms.

See Also:

Download slides icon Download slides: mmdss07_weston_lsssl_01.pdf (9.2┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: