Bayesian Nonparametrics

author: Yee Whye Teh, Department of Statistics, University of Oxford
published: Oct. 12, 2011,   recorded: September 2011,   views: 4229
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

 Watch videos:   (click on thumbnail to launch)

Watch Part 1
Part 1 1:33:15
!NOW PLAYING
Watch Part 2
Part 2 1:46:03
!NOW PLAYING
Watch Part 3
Part 3 1:32:32
!NOW PLAYING

Description

Machine learning researchers often have to contend with issues of model selection and model fitting in the context of large complicated models and sparse data. The idea which I am pushing for in this project is that these can be nicely handled using Bayesian techniques.

Model selection is selecting, among a class of models each of which has finite capacity, the model of the right capacity. Nonparametric Bayesian modelling sidesteps model selection by simply using models of potentially unbounded (or infinite) capacity. Overfitting is avoided simply by the usual Bayesian approach of integrating out all parameters (perhaps using MCMC or variational methods).

See Also:

Download slides icon Download slides: mlss2011_teh_nonparametrics.pdf (14.9┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: