en-de
en-es
en-fr
en-sl
en
en-zh
0.25
0.5
0.75
1.25
1.5
1.75
2
Dirichlet Processes: Tutorial and Practical Course
Published on Aug 27, 2007140458 Views
**The Bayesian approach** allows for a coherent framework for dealing with uncertainty in machine learning. By integrating out parameters, Bayesian models do not suffer from overfitting, thus it is co
Related categories
Chapter list
Dirichlet Processes: Tutorial and Practical Course00:01
Dirichlet Processes01:34
Outline-part0103:55
Outline-part0204:34
Function estimation-part0104:37
Function estimation-part0206:42
Function estimation-part0307:41
Density estimation-part0108:08
Density estimation-part0210:11
Density estimation-part0311:08
Density estimation-part0411:26
Density estimation-part0513:26
Density estimation-part0614:40
Semiparametric modelling-part0115:26
Semiparametric modelling-part0217:55
Model selection/averaging-part0119:47
Model selection/averaging-part0221:34
Model selection/averaging-part0321:41
Model selection/averaging-part0422:03
Model selection/averaging-part0523:54
Model selection/averaging-part04A24:05
Model selection/averaging-part05A28:10
Model selection/averaging-part0628:35
Model selection/averaging-part0730:25
Model selection/averaging-part0831:32
Model selection/averaging-part0933:44
Outline-part0334:36
Finite mixture models34:52
Infinite mixture models36:15
Gaussian processes-part0139:46
Gaussian processes-part0240:19
Gaussian processes-part0341:10
Dirichlet processes-part0141:45
Dirichlet processes-part0243:25
Dirichlet processes-part01A43:33
Dirichlet processes-part02A43:47
Dirichlet processes-part0345:44
Dirichlet processes-part0447:09
Dirichlet processes-part0548:25
Dirichlet processes-part0651:34
Dirichlet processes-part0754:28
Dirichlet processes-part0855:28
Dirichlet processes-part0956:23
Dirichlet processes-part1056:46
Dirichlet processes-part1157:38
Dirichlet processes-part1257:56
Dirichlet processes-part1358:13
Outline-part0458:16