Targeted retrieval of gene expression measurements using regulatory models

author: Elisabeth Georgii, Helsinki Institute for Information Technology
published: Oct. 23, 2012,   recorded: September 2012,   views: 2661


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Motivation: Large public repositories of gene expression measurements offer the opportunity to position a new experiment into the context of earlier studies. While previous methods rely on experimental annotation or global similarity of expression profiles across genes or gene sets, we compare experiments by measuring similarity based on an unsupervised, data-driven regulatory model around pre-specified genes of interest. Our experiment retrieval approach is novel in two conceptual respects: (i) targetable focus and interpretability: the analysis is targeted at regulatory relationships of genes that are relevant to the analyst or come from prior knowledge; (ii) regulatory model-based similarity measure: related experiments are retrieved based on the strength of inferred regulatory links between genes.
Results: We learn a model for the regulation of specific genes from a data repository, and exploit it to construct a similarity metric for an information retrieval task. We use the Fisher kernel, a rigorous similarity measure that typically has been applied to utilize generative models in discriminative classifiers. Results on human and plant microarray collections indicate that our method is able to substantially improve the retrieval of related experiments against standard methods. Furthermore, it allows the user to interpret biological conditions in terms of changes in link activity patterns. Our study of the osmotic stress network for A. thaliana shows that the method successfully identifies relevant relationships around given key genes.
Availability: The code (R) will be available at http://research. at the time of publication.

See Also:

Download slides icon Download slides: mlsb2012_georgii_retrieval_01.pdf (1012.1┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: