Protein-protein network inference with regularized output and input kernel methods

author: Florence d'Alche-Buc, Université Evry Val d'Essonne
published: Nov. 8, 2010,   recorded: October 2010,   views: 246
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Prediction of a physical interaction between two proteins has been addressed in the context of supervised learning, unsupervised learning and more recently, semi-supervised learning using various sources of information (genomic, phylogenetic, protein localization and function). The problem can be seen as a kernel matrix completion task if one defines a kernel that encodes similarity between proteins as nodes in a graph or alternatively, as a binary supervised classification task where inputs are pairs of proteins.

In this talk, we first make a review of existing works (matrix completion, SVM for pairs, metric learning, training set expansion), identifying the relevant features of each approach. Then we define the framework of output kernel regression (OKR) that uses the kernel trick in the output feature space. After recalling the results obtained so far with tree-based output kernel regression methods, we develop a new family of methods based on Kernel Ridge Regression that benefit from the use of kernels both in the input feature space and the output feature space. The main interest of such methods is that imposing various regularization constraints still leads to closed form solutions. We show especially how such an approach allows to handle unlabeled data in a transductive setting of the network inference problem and multiple networks in a multi-task like inference problem. New results on simulated data and yeast data illustrate the talk.

See Also:

Download slides icon Download slides: mlsb2010_dalche_buc_ppn_01.pdf (1.4¬†MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: