Quantitative Microscopy: Bridge Between "Wet" Biology and Computer Science

author: Yannis L. Kalaidzidis, Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Institute
published: Oct. 5, 2009,   recorded: September 2009,   views: 4551


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.

 Watch videos:   (click on thumbnail to launch)

Watch Part 1
Part 1 45:18
Watch Part 2
Part 2 12:28


Quantification of experimental evidence is an important aspect of modern life science. In microscopy, this causes a shift from pure presentation of "supporting cases" toward the quantification of the processes under study. Computer image processing breaks through the light microcopy diffraction limit, it allows to track individual molecules in the life specimen, quantify distribution and co-localization of compartment markers, etc. The quantified experimental data forms a basis for the models of the biological processes. Quality of predictive models is crucially dependent on the accuracy of the quantified experimental data. The quality of experimental data is a function of algorithms as well as the imperfections of the "wet" experiment. The number of research papers devoted to the algorithms of microcopy image analysis, segmentation, classification and tracking has grown very fast in the last two decades. The analysis of the source of noise in "wet" biology and microscopy has gotten less attention. In this talk I will focus on the correction of experimental data before applying analysis algorithms. These corrections have two faces. They are obligatory to compensate for imperfections of "wet" microscopy while at the same time this correction can break some assumptions, which form the basis of algorithms for subsequent analysis. The examples of the different approaches for "pre-" and "post-" correction will be presented.

See Also:

Download slides icon Download slides: mlsb09_kalaidzidis_qmbb_01.pdf (8.1┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: