Automatic Speech Recognition and Speech Activity Detection in the CHIL Smart Room

author: Stephen M. Chu, IBM Thomas J. Watson Research Center
published: Feb. 25, 2007,   recorded: June 2005,   views: 7464


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


An important step to bring speech technologies into wide deployment as a functional component in man-machine interfaces is to free the users from close-talk or desktop microphones, and enable far-field operation in various natural communication environments. In this work, we consider far-field automatic speech recognition and speech activity detection in conference rooms. The experiments are conducted on the smart room platform provided by the CHIL project.  The first half of the paper addresses the development of speech recognition systems for the seminar transcription task. In particular, we look into the effect of combining parallel recognizers in both single-channel and multi-channel settings.  In the second half of the paper, we describe a novel algorithm for speech activity detection based on fusing phonetic likelihood scores and energy features. It is shown that the proposed technique is able to handle non-stationary noise events and achieves good performance on the CHIL seminar corpus.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: