6th International Workshop on Mining and Learning with Graphs (MLG), Helsinki 2008

6th International Workshop on Mining and Learning with Graphs (MLG), Helsinki 2008

21 Videos · Jul 4, 2008

About

Driven by application areas ranging from biology to the World Wide Web, research in Data Mining and Machine Learning is nowadays increasingly focusing on the analysis of structured data. Of particular interest is data that consists of interrelated parts or is characterized by collections of objects that are interrelated and linked together into complex graphs and structures. Following in the footsteps of the highly successful MLG workshops in the past, MLG 2008 again will be the premier forum for bringing together different sub-disciplines within Machine Learning and Data Mining that focus on the analysis of structured data. The workshop is actively seeking contributions dealing with all forms of structured data, including but not limited to graphs, trees, sequences, relations and networks.

Contributions are invited from all relevant disciplines, such as for example

  • Statistical Relational Learning
  • Inductive Logic Programming
  • Kernel Methods for Structured Data
  • Probabilistic Models for Structured Data
  • Graph Mining
  • (Multi-)relational Data Mining
  • Methods for Structured Outputs
  • Network Analysis

Videos

Session 1

video-img
28:46

Inferring the structure and scale of modular networks

Jake M. Hofman

Aug 25, 2008

 · 

3507 views

video-img
27:31

Combining near-optimal feature selection with gSpan

Marisa Thoma

Aug 25, 2008

 · 

3899 views

video-img
26:45

Representative Subgraph Sampling using Markov Chain Monte Carlo Methods

Karsten Michael Borgwardt

Aug 25, 2008

 · 

4996 views

video-img
18:47

Min, Max and PTIME Anti-Monotonic Overlap Graph Measures

Dries Van Dyck

Aug 25, 2008

 · 

3098 views

video-img
57:17

Four graph partitioning algorithms

Fan Chung

Aug 25, 2008

 · 

5672 views

Session 2

video-img
54:09

Influence and Correlation in Social Networks

Mohammad Mahdian

Aug 25, 2008

 · 

10504 views

video-img
26:48

An Online Algorithm for Learning a Labeling of a Graph

Kristiaan Pelckmans

Aug 25, 2008

 · 

3095 views

video-img
31:01

Classification in Graphs using Discriminative Random Walks

Jerome Callut

Aug 25, 2008

 · 

4524 views

video-img
29:18

Induction of Node Label Controlled Graph Grammar Rules

Hendrik Blockeel

Aug 25, 2008

 · 

4394 views

video-img
14:21

Poster Spotlights

Aug 25, 2008

 · 

2665 views

video-img
29:46

A New Kernel for Classification of Networked Entitiess

Dell Zhang

Aug 25, 2008

 · 

3074 views

Session 3

video-img
59:43

Structured Output Prediction with Structural SVMs

Thorsten Joachims

Aug 25, 2008

 · 

24346 views

video-img
27:50

Structure and tie strengths in a mobile communication network

Jari Saramaki

Aug 25, 2008

 · 

4191 views

video-img
32:18

Improved Software Fault Detection with Graph Mining

Frank Eichinger

Aug 25, 2008

 · 

4621 views

video-img
37:41

Efficient Discriminative Training Method for Structured Predictions

Huizhen Yu

Aug 25, 2008

 · 

3444 views

Session 4

video-img
50:43

Biomine search engine for probabilistic graphs

Hannu Toivonen

Aug 25, 2008

 · 

2957 views

video-img
26:05

Markov Logic Improves Protein β-Partners Prediction

Marco Lippi

Aug 25, 2008

 · 

3150 views

video-img
21:33

A Hilbert-Schmidt Dependence Maximization Approach to Unsupervised Structure Dis...

Arthur Gretton

Aug 25, 2008

 · 

4900 views

video-img
26:26

Infinite mixtures for multi-relational categorical data

Janne Sinkkonen

Aug 25, 2008

 · 

3012 views

video-img
23:09

Parameter Learning in Probabilistic Databases: A Least Squares Approach

Bernd Gutmann

Aug 25, 2008

 · 

2959 views

video-img
06:04

Opening Remarks

Samuel Kaski

Aug 25, 2008

 · 

2846 views