Lecture 2: 1D Kinematics - Speed - Velocity - Acceleration
recorded by: Massachusetts Institute of Technology, MIT
published: Oct. 10, 2008, recorded: September 1999, views: 120037
released under terms of: Creative Commons Attribution Non-Commercial Share Alike (CC-BY-NC-SA)
See Also:
Download mit801f99_lewin_lec02_01.m4v (Video - generic video source 109.8 MB)
Download mit801f99_lewin_lec02_01.rm (Video - generic video source 111.5 MB)
Download mit801f99_lewin_lec02_01.flv (Video 147.0 MB)
Download mit801f99_lewin_lec02_01_352x240_h264.mp4 (Video 153.0 MB)
Download mit801f99_lewin_lec02_01.wmv (Video 450.5 MB)
Download subtitles: TT/XML,
RT,
SRT
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
>>PLEASE TAKE A QUICK SURVEY<<
1. Introduction to 1-Dimensional Motion:
Professor Lewin describes 1D motion of a particle. He talks about average velocity, the importance of "+" and "-" signs, and our free choice of origin.
2. Average Speed vs. Average Velocity:
The two are VERY different. The average velocity can be ZERO, while the average speed is LARGE.
3. Instantaneous Velocity:
Considering the incremental change in position x with time t, we arrive at v=dx/dt. The instantaneous velocity is the derivative of the position with respect to time. Professor Lewin reviews when the velocity is zero, positive and negative; he distinguishes speed from velocity.
4. Measuring the Average Speed of a Bullet:
Professor Lewin shoots a bullet through two wires. The average speed can be calculated from the distance between the wires and the elapsed time. All uncertainties in the measurements are discussed; they have to be taken into account in the final answer.
5. Introducing Average Acceleration:
The average acceleration between time t1 and t2 is the vectorial change in velocity divided by (t2-t1).
6. Instantaneous Acceleration:
The acceleration, dv/dt, is the derivative of the velocity with time. It is the second derivative of the position x with time. Professor Lewin shows how to find the sign of the acceleration from the slope in an x-t plot.
7. Quadratic Equation of Position in Time:
When the position is proportional to the square of the time, the velocity depends linearly on time, and the acceleration is constant.
8. 1D Motion with Constant Acceleration:
Professor Lewin writes down a general quadratic equation for the position as a function of time, and he relates the constants in this equation to the initial conditions at time t=0. The gravitational acceleration is a constant (9.80 m/s^2 in Boston), and it is independent of the mass and shape of a free-falling object, if air drag can be ignored (see Lecture #12). You can use this result to measure g using the free fall time measurements from the falling apples in lecture 1. 9. Strobing an Object in Free Fall: Professor Lewin drops an apple from 3.20 m and takes a polaroid picture of the falling apple which is illuminated by a strobe light. First two light flashes per second, and then ten flashes per second.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Reviews and comments:
awesome!
Very Very GOOD LECTURE
well !
if i get chance i d b lik dat!
Excellent presentation by Dr. Lewin, even a dummy like myself can grip it.
One important observation:
the lecture is easily understood even by a non native english language speaker very well.
im as student looking this vedieos really appreceioutes it can i get a cd disk of theses vedieos.
It's very useful for me!
Very nice lectures!But can anybody help how can I download them?
very very useful... hope to enter MIT one fine day.......
use IDM (internet download manager) to download vids...
Great video my brothaa.I iunderstood it very well.
He is the only one teacher so for I have seen in my
life,He is the man sent by God I think,
very very useful lectures
sad that mit remove his lecture from ocw
Mr,Walter is the best teacher i have ever seen.he delivers lecture in an amazing way.i have learn so many things from him.
So invaluable lecture. how can i burn then on the dvd disc?
Hi all!
We have translated this entire course for you from English into 11 languages.
Check this video and give us some feedback in this short survey https://www.surveymonkey.co.uk/r/6DMBC3Q
Write your own review or comment: