MIT 18.03 Differential Equations - Spring 2006

MIT 18.03 Differential Equations - Spring 2006

67 Lectures · Feb 5, 2003

About

Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues and eigenvectors; and Non-linear autonomous systems: critical point analysis and phase plane diagrams.

Course Homepage 18.03 Differential Equations Spring 2006

Course features at MIT OpenCourseWare page:

*Syllabus *Calendar *Readings *Lecture Notes *Recitations *Assignment *Exams *Tools *Download Course Materials

Complete MIT OCW video collection at MIT OpenCourseWare - VideoLectures.NET

Related categories

Uploaded videos:

video-img
48:55

Lecture 1: The Geometrical View of y'=f(x,y): Direction Fields, Integral Curves

Arthur Mattuck

Jan 19, 2009

 Â· 

52745 Views

Lecture
video-img
50:45

Lecture 2: Euler's Numerical Method for y'=f(x,y) and its Generalizations

Arthur Mattuck

Jan 19, 2009

 Â· 

21379 Views

Lecture
video-img
50:22

Lecture 3: Solving First-order Linear ODE's; Steady-state and Transient Solution...

Arthur Mattuck

Jan 19, 2009

 Â· 

18305 Views

Lecture
video-img
50:13

Lecture 4: First-order Substitution Methods: Bernouilli and Homogeneous ODE's

Arthur Mattuck

Jan 19, 2009

 Â· 

13545 Views

Lecture
video-img
45:46

Lecture 5: First-order Autonomous ODE's: Qualitative Methods, Applications

Arthur Mattuck

Jan 19, 2009

 Â· 

10463 Views

Lecture
video-img
45:28

Lecture 6: Complex Numbers and Complex Exponentials

Arthur Mattuck

Jan 19, 2009

 Â· 

15616 Views

Lecture
video-img
41:09

Lecture 7: First-order Linear with Constant Coefficients: Behavior of Solutions,...

Arthur Mattuck

Jan 19, 2009

 Â· 

10378 Views

Lecture
video-img
50:36

Lecture 8: Continuation; Applications to Temperature, Mixing, RC-circuit, Decay...

Arthur Mattuck

Jan 19, 2009

 Â· 

8059 Views

Lecture
video-img
50:00

Lecture 9: Solving Second-order Linear ODE's with Constant Coefficients: The Thr...

Arthur Mattuck

Jan 19, 2009

 Â· 

10171 Views

Lecture
video-img
46:24

Lecture 10: Continuation: Complex Characteristic Roots; Undamped and Damped Osci...

Arthur Mattuck

Jan 19, 2009

 Â· 

8326 Views

Lecture
video-img
50:31

Lecture 11: Theory of General Second-order Linear Homogeneous ODE's: Superpositi...

Arthur Mattuck

Jan 19, 2009

 Â· 

8122 Views

Lecture
video-img
46:24

Lecture 12: Continuation: General Theory for Inhomogeneous ODE's. Stability Crit...

Arthur Mattuck

Jan 19, 2009

 Â· 

7535 Views

Lecture
video-img
47:55

Lecture 13: Finding Particular Sto Inhomogeneous ODE's: Operator and Solution Fo...

Arthur Mattuck

Jan 19, 2009

 Â· 

8131 Views

Lecture
video-img
44:26

Lecture 14: Interpretation of the Exceptional Case: Resonance

Arthur Mattuck

Jan 19, 2009

 Â· 

7145 Views

Lecture
video-img
49:31

Lecture 15: Introduction to Fourier Series; Basic Formulas for Period 2(pi)

Arthur Mattuck

Jan 19, 2009

 Â· 

25842 Views

Lecture
video-img
49:29

Lecture 16: Continuation: More General Periods; Even and Odd Functions; Periodic...

Arthur Mattuck

Jan 19, 2009

 Â· 

9415 Views

Lecture
video-img
45:46

Lecture 17: Finding Particular Solutions via Fourier Series; Resonant Terms; Hea...

Arthur Mattuck

Jan 19, 2009

 Â· 

8273 Views

Lecture
video-img
47:40

Lecture 19: Introduction to the Laplace Transform; Basic Formulas

Arthur Mattuck

Jan 19, 2009

 Â· 

36779 Views

Lecture
video-img
51:07

Lecture 20: Derivative Formulas; Using the Laplace Transform to Solve Linear ODE...

Arthur Mattuck

Jan 19, 2009

 Â· 

14771 Views

Lecture
video-img
44:19

Lecture 21: Convolution Formula: Proof, Connection with Laplace Transform, Appli...

Arthur Mattuck

Jan 19, 2009

 Â· 

15291 Views

Lecture
video-img
44:08

Lecture 22: Using Laplace Transform to Solve ODE's with Discontinuous Inputs

Arthur Mattuck

Jan 19, 2009

 Â· 

10920 Views

Lecture
video-img
44:55

Lecture 23: Use with Impulse Inputs; Dirac Delta Function, Weight and Transfer F...

Arthur Mattuck

Jan 19, 2009

 Â· 

10484 Views

Lecture
video-img
47:04

Lecture 24: Introduction to First-order Systems of ODE's; Solution by Eliminatio...

Arthur Mattuck

Jan 19, 2009

 Â· 

7315 Views

Lecture
video-img
49:06

Lecture 25: Homogeneous Linear Systems with Constant Coefficients: Solution via ...

Arthur Mattuck

Jan 19, 2009

 Â· 

9860 Views

Lecture
video-img
46:37

Lecture 26: Continuation: Repeated Real Eigenvalues, Complex Eigenvalues

Arthur Mattuck

Jan 19, 2009

 Â· 

7378 Views

Lecture
video-img
50:27

Lecture 27: Sketching Solutions of 2x2 Homogeneous Linear System with Constant C...

Arthur Mattuck

Jan 19, 2009

 Â· 

7339 Views

Lecture
video-img
46:53

Lecture 28: Matrix Methods for Inhomogeneous Systems: Theory, Fundamental Matrix...

Arthur Mattuck

Jan 19, 2009

 Â· 

7469 Views

Lecture
video-img
48:53

Lecture 29: Matrix Exponentials; Application to Solving Systems

Arthur Mattuck

Jan 19, 2009

 Â· 

6269 Views

Lecture
video-img
47:06

Lecture 30: Decoupling Linear Systems with Constant Coefficients

Arthur Mattuck

Jan 19, 2009

 Â· 

6763 Views

Lecture
video-img
47:11

Lecture 31: Non-linear Autonomous Systems: Finding the Critical Points and Sketc...

Arthur Mattuck

Jan 19, 2009

 Â· 

9321 Views

Lecture
video-img
45:53

Lecture 32: Limit Cycles: Existence and Non-existence Criteria

Arthur Mattuck

Jan 19, 2009

 Â· 

16464 Views

Lecture
video-img
50:09

Lecture 33: Relation Between Non-linear Systems and First-order ODE's; Structura...

Arthur Mattuck

Jan 19, 2009

 Â· 

7634 Views

Lecture

Unit I: First Order Differential Equations

video-img
07:18

Separable Equations

Lydia Bourouiba

Mar 05, 2013

 Â· 

6151 Views

Lecture
video-img
11:08

Direction Fields

David Shirokoff

Mar 05, 2013

 Â· 

3121 Views

Lecture
video-img
10:16

Euler's Method

David Shirokoff

Mar 05, 2013

 Â· 

3029 Views

Lecture
video-img
10:41

Linear Equations

David Shirokoff

Mar 05, 2013

 Â· 

2635 Views

Lecture
video-img
08:56

Solutions of First Order Linear Equations

Lydia Bourouiba

Mar 05, 2013

 Â· 

4203 Views

Lecture
video-img
11:30

Complex Numbers and Euler's Formula

Lydia Bourouiba

Mar 05, 2013

 Â· 

3289 Views

Lecture
video-img
15:03

Sinusoidal Functions

David Shirokoff

Mar 05, 2013

 Â· 

2249 Views

Lecture
video-img
13:18

First Order Constant Coefficient Linear ODE's

David Shirokoff

Mar 05, 2013

 Â· 

2407 Views

Lecture
video-img
13:46

Sinusoidal Inputs

Lydia Bourouiba

Mar 05, 2013

 Â· 

2540 Views

Lecture
video-img
11:44

Autonomous Equations and Phase Lines

David Shirokoff

Mar 05, 2013

 Â· 

2408 Views

Lecture

Unit II: Second Order Constant Coefficient Linear Equations

video-img
09:15

Homogeneous Constant Coefficient Equations: Real Roots

David Shirokoff

Mar 05, 2013

 Â· 

2534 Views

Lecture
video-img
11:28

Homogeneous Constant Coefficient Equations: Any Roots

Lydia Bourouiba

Mar 05, 2013

 Â· 

3077 Views

Lecture
video-img
13:06

Forced Oscillations

David Shirokoff

Mar 05, 2013

 Â· 

2304 Views

Lecture
video-img
10:39

Gain and Phase Lag

David Shirokoff

Mar 05, 2013

 Â· 

2322 Views

Lecture
video-img
10:42

Undetermined Coefficients

David Shirokoff

Mar 05, 2013

 Â· 

2448 Views

Lecture
video-img
11:17

Pure Resonance

Lydia Bourouiba

Mar 05, 2013

 Â· 

3315 Views

Lecture
video-img
14:44

Frequency Response

David Shirokoff

Mar 05, 2013

 Â· 

2273 Views

Lecture

Unit III: Fourier Series and Laplace Transform

video-img
14:41

Computing Fourier Series

David Shirokoff

Mar 05, 2013

 Â· 

2781 Views

Lecture
video-img
14:29

Manipulating Fourier Series

David Shirokoff

Mar 05, 2013

 Â· 

2386 Views

Lecture
video-img
11:14

Linear ODE's with Periodic Input

David Shirokoff

Mar 05, 2013

 Â· 

2389 Views

Lecture
video-img
09:57

Convolution and Green's Formula

David Shirokoff

Mar 05, 2013

 Â· 

2602 Views

Lecture
video-img
12:29

Partial Fractions and Laplace Inverse

David Shirokoff

Mar 05, 2013

 Â· 

2547 Views

Lecture
video-img
09:08

Laplace Transform: Basics

Lydia Bourouiba

Mar 05, 2013

 Â· 

8320 Views

Lecture
video-img
09:23

Step and Delta Functions: Integration and Generalized Derivatives

Lydia Bourouiba

Mar 05, 2013

 Â· 

3179 Views

Lecture
video-img
13:01

Unit Step and Impulse Response

Lydia Bourouiba

Mar 05, 2013

 Â· 

3022 Views

Lecture
video-img
10:32

Pole Diagrams

Lydia Bourouiba

Mar 05, 2013

 Â· 

2556 Views

Lecture

IV: First-order Systems

video-img
08:00

Linear Systems: Matrix Methods

Lydia Bourouiba

Mar 05, 2013

 Â· 

3302 Views

Lecture
video-img
11:54

Matrix Exponentials

Lydia Bourouiba

Mar 05, 2013

 Â· 

2493 Views

Lecture
video-img
12:13

Phase Portraits

Lydia Bourouiba

Mar 05, 2013

 Â· 

2747 Views

Lecture
video-img
15:54

Linearization

Lydia Bourouiba

Mar 05, 2013

 Â· 

2728 Views

Lecture
video-img
09:29

Damped Harmonic Oscillators

Lydia Bourouiba

Mar 05, 2013

 Â· 

2876 Views

Lecture
video-img
18:55

Trace-Determinant Diagram

Lydia Bourouiba

Mar 05, 2013

 Â· 

2695 Views

Lecture
video-img
11:48

Linear Systems: Complex Roots

Lydia Bourouiba

Mar 05, 2013

 Â· 

2852 Views

Lecture
video-img
06:33

Linear Systems of Equations

Lydia Bourouiba

Mar 05, 2013

 Â· 

8056 Views

Lecture
video-img
11:24

Laplace: Solving ODE's

David Shirokoff

Mar 05, 2013

 Â· 

2979 Views

Lecture