MIT 18.02 Multivariable Calculus - Fall 2007

MIT 18.02 Multivariable Calculus - Fall 2007

35 Lectures ยท Sep 3, 2007

About

This course covers vector and multi-variable calculus. It is the second semester in the freshman calculus sequence. Topics include vectors and matrices, partial derivatives, double and triple integrals, and vector calculus in 2 and 3-space.

MIT OpenCourseWare offers another version of 18.02, from the Spring 2006 term. Both versions cover the same material, although they are taught by different faculty and rely on different textbooks. Multivariable Calculus (18.02) is taught during the Fall and Spring terms at MIT, and is a required subject for all MIT undergraduates.

Course Homepage: 18.02 Multivariable Calculus Fall 2007

Course features at MIT OpenCourseWare page: *Syllabus *Calendar *Readings *Lecture Notes *Assignments *Download Tools *Download this Course

Complete MIT OCW video collection at MIT OpenCourseWare - VideoLectures.NET

Uploaded videos:

video-img
38:41

Lecture 1: Dot product

Denis Auroux

Sep 10, 2009

 ยท 

18037 Views

Lecture
video-img
52:51

Lecture 2: Determinants; cross product

Denis Auroux

Sep 10, 2009

 ยท 

9518 Views

Lecture
video-img
51:04

Lecture 3: Matrices; inverse matrices

Denis Auroux

Sep 10, 2009

 ยท 

8432 Views

Lecture
video-img
49:03

Lecture 4: Square systems; equations of planes

Denis Auroux

Sep 10, 2009

 ยท 

6210 Views

Lecture
video-img
50:50

Lecture 5: Parametric equations for lines and curves

Denis Auroux

Sep 10, 2009

 ยท 

8046 Views

Lecture
video-img
48:04

Lecture 6: Velocity, acceleration - Kepler's second law

Denis Auroux

Sep 10, 2009

 ยท 

5893 Views

Lecture
video-img
49:50

Lecture 7: Review

Denis Auroux

Sep 10, 2009

 ยท 

4853 Views

Lecture
video-img
46:12

Lecture 8: Level curves; partial derivatives; tangent plane approximation

Denis Auroux

Sep 10, 2009

 ยท 

10966 Views

Lecture
video-img
49:44

Lecture 9: Max-min problems; least squares

Denis Auroux

Sep 10, 2009

 ยท 

7020 Views

Lecture
video-img
52:17

Lecture 10: Second derivative test; boundaries and infinity

Denis Auroux

Sep 10, 2009

 ยท 

4792 Views

Lecture
video-img
50:09

Lecture 11: Differentials; chain rule

Denis Auroux

Sep 10, 2009

 ยท 

5718 Views

Lecture
video-img
50:09

Lecture 12: Gradient; directional derivative; tangent plane

Denis Auroux

Sep 10, 2009

 ยท 

6201 Views

Lecture
video-img
50:11

Lecture 13: Lagrange multipliers

Denis Auroux

Sep 10, 2009

 ยท 

6618 Views

Lecture
video-img
49:11

Lecture 14: Non-independent variables

Denis Auroux

Sep 10, 2009

 ยท 

3431 Views

Lecture
video-img
45:22

Lecture 15: Partial differential equations; review

Denis Auroux

Sep 10, 2009

 ยท 

10409 Views

Lecture
video-img
47:59

Lecture 16: Double integrals

Denis Auroux

Sep 10, 2009

 ยท 

5865 Views

Lecture
video-img
51:29

Lecture 17: Double integrals in polar coordinates; applications

Denis Auroux

Sep 10, 2009

 ยท 

4921 Views

Lecture
video-img
49:55

Lecture 18: Change of variables

Denis Auroux

Sep 10, 2009

 ยท 

3882 Views

Lecture
video-img
51:10

Lecture 19: Vector fields and line integrals in the plane

Denis Auroux

Sep 10, 2009

 ยท 

5493 Views

Lecture
video-img
50:22

Lecture 20: Path independence and conservative fields

Denis Auroux

Sep 10, 2009

 ยท 

4011 Views

Lecture
video-img
50:11

Lecture 21: Gradient fields and potential functions

Denis Auroux

Sep 10, 2009

 ยท 

4527 Views

Lecture
video-img
46:44

Lecture 22: Green's theorem

Denis Auroux

Sep 10, 2009

 ยท 

5104 Views

Lecture
video-img
50:12

Lecture 23: Flux; normal form of Green's theorem

Denis Auroux

Sep 10, 2009

 ยท 

4450 Views

Lecture
video-img
49:01

Lecture 24: Simply connected regions; review

Denis Auroux

Sep 10, 2009

 ยท 

2996 Views

Lecture
video-img
48:41

Lecture 25: Triple integrals in rectangular and cylindrical coordinates

Denis Auroux

Sep 10, 2009

 ยท 

4104 Views

Lecture
video-img
51:04

Lecture 26: Spherical coordinates; surface area

Denis Auroux

Sep 10, 2009

 ยท 

4156 Views

Lecture
video-img
50:34

Lecture 27: Vector fields in 3D; surface integrals and flux

Denis Auroux

Sep 10, 2009

 ยท 

4446 Views

Lecture
video-img
49:15

Lecture 28: Divergence theorem

Denis Auroux

Sep 10, 2009

 ยท 

4620 Views

Lecture
video-img
50:12

Lecture 29: Divergence theorem (cont.): applications and proof

Denis Auroux

Sep 10, 2009

 ยท 

4209 Views

Lecture
video-img
49:41

Lecture 30: Line integrals in space, curl, exactness and potentials

Denis Auroux

Sep 10, 2009

 ยท 

3785 Views

Lecture
video-img
48:20

Lecture 31: Stokes' theorem

Denis Auroux

Sep 10, 2009

 ยท 

5729 Views

Lecture
video-img
50:08

Lecture 32: Stokes' theorem (cont.); review

Denis Auroux

Sep 10, 2009

 ยท 

3424 Views

Lecture
video-img
28:38

Lecture 33: Topological considerations - Maxwell's equations

Denis Auroux

Sep 10, 2009

 ยท 

4008 Views

Lecture
video-img
43:53

Lecture 34: Final review

Denis Auroux

Sep 10, 2009

 ยท 

2634 Views

Lecture
video-img
48:52

Lecture 35: Final review (cont.)

Denis Auroux

Sep 10, 2009

 ยท 

2761 Views

Lecture