Learning with Invariance via Linear Functionals on Reproducing Kernel Hilbert Space
published: Nov. 7, 2014, recorded: January 2014, views: 2722
Slides
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
Incorporating invariance information is important for many learning problems. To exploit invariances, most existing methods resort to approximations that either lead to expensive optimization problems such as semi-definite programming, or rely on separation oracles to retain tractability. Some methods further limit the space of functions and settle for non-convex models. In this paper, we propose a framework for learning in reproducing kernel Hilbert spaces (RKHS) using local invariances that explicitly characterize the behavior of the target function around data instances. These invariances are \emph{compactly} encoded as linear functionals whose value are penalized by some loss function. Based on a representer theorem that we establish, our formulation can be efficiently optimized via a convex program. For the representer theorem to hold, the linear functionals are required to be bounded in the RKHS, and we show that this is true for a variety of commonly used RKHS and invariances. Experiments on learning with unlabeled data and transform invariances show that the proposed method yields better or similar results compared with the state of the art.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: