Patient Risk Stratification for Hospital-Associated C. Diff as a Time-Series Classification Task

author: Jenna Wiens, Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, MIT
published: Jan. 18, 2013,   recorded: December 2012,   views: 434
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

A patient's risk for adverse events is affected by temporal processes including the nature and timing of diagnostic and therapeutic activities, and the overall evolution of the patient's pathophysiology over time. Yet many investigators ignore this temporal aspect when modeling patient risk, considering only the patient's current or aggregate state. We explore representing patient risk as a time series. In doing so, patient risk stratification becomes a time-series classification task. The task differs from most applications of time-series analysis, like speech processing, since the time series itself must first be extracted. Thus, we begin by defining and extracting approximate \textit{risk processes}, the evolving approximate daily risk of a patient. Once obtained, we use these signals to explore different approaches to time-series classification with the goal of identifying high-risk patterns. We apply the classification to the specific task of identifying patients at risk of testing positive for hospital acquired colonization with \textit{Clostridium Difficile}. We achieve an area under the receiver operating characteristic curve of 0.79 on a held-out set of several hundred patients. Our two-stage approach to risk stratification outperforms classifiers that consider only a patient's current state (p<0.05).

See Also:

Download slides icon Download slides: machine_wiens_patient_01.pdf (8.2 MB)

Download article icon Download article: machine_wiens_patient_01.pdf (464.2 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: