Provable Subspace Clustering: When LRR meets SSC

author: Yu-Xiang Wang, School of Computer Science, Carnegie Mellon University
published: Nov. 7, 2014,   recorded: January 2014,   views: 1909


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Sparse Subspace Clustering (SSC) and Low-Rank Representation (LRR) are both considered as the state-of-the-art methods for {\em subspace clustering}. The two methods are fundamentally similar in that both are convex optimizations exploiting the intuition of "Self-Expressiveness''. The main difference is that SSC minimizes the vector ℓ1 norm of the representation matrix to induce sparsity while LRR minimizes nuclear norm (aka trace norm) to promote a low-rank structure. Because the representation matrix is often simultaneously sparse and low-rank, we propose a new algorithm, termed Low-Rank Sparse Subspace Clustering (LRSSC), by combining SSC and LRR, and develops theoretical guarantees of when the algorithm succeeds. The results reveal interesting insights into the strength and weakness of SSC and LRR and demonstrate how LRSSC can take the advantages of both methods in preserving the "Self-Expressiveness Property'' and "Graph Connectivity'' at the same time.

See Also:

Download slides icon Download slides: machine_wang_subspace_clustering_01.pdf (432.9 KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: