Small-Variance Asymptotics for Hidden Markov Models

author: Anirban Roychowdhury, Department of Computer Science and Engineering, Ohio State University
published: Nov. 7, 2014,   recorded: January 2014,   views: 1651
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Small-variance asymptotics provide an emerging technique for obtaining scalable combinatorial algorithms from rich probabilistic models. We present a small-variance asymptotic analysis of the Hidden Markov Model and its infinite-state Bayesian nonparametric extension. Starting with the standard HMM, we first derive a “hard” inference algorithm analogous to k-means that arises when particular variances in the model tend to zero. This analysis is then extended to the Bayesian nonparametric case, yielding a simple, scalable, and flexible algorithm for discrete-state sequence data with a non-fixed number of states. We also derive the corresponding combinatorial objective functions arising from our analysis, which involve a k-means-like term along with penalties based on state transitions and the number of states. A key property of such algorithms is that — particularly in the nonparametric setting — standard probabilistic inference algorithms lack scalability and are heavily dependent on good initialization. A number of results on synthetic and real data sets demonstrate the advantages of the proposed framework.

See Also:

Download slides icon Download slides: machine_roychowdhury_markov_models_01.pdf (239.2 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: