On the Relationship Between Binary Classification, Bipartite Ranking, and Binary Class Probability Estimation

author: Harikrishna Narasimhan, Indian Institute of Science Bangalore
published: Nov. 7, 2014,   recorded: January 2014,   views: 1950
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We investigate the relationship between three fundamental problems in machine learning: binary classification, bipartite ranking, and binary class probability estimation (CPE). It is known that a good binary CPE model can be used to obtain a good binary classification model (by thresholding at 0.5), and also to obtain a good bipartite ranking model (by using the CPE model directly as a ranking model); it is also known that a binary classification model does not necessarily yield a CPE model. However, not much is known about other directions. Formally, these relationships involve regret transfer bounds. In this paper, we introduce the notion of weak regret transfer bounds, where the mapping needed to transform a model from one problem to another depends on the underlying probability distribution (and in practice, must be estimated from data). We then show that, in this weaker sense, a good bipartite ranking model can be used to construct a good classification model (by thresholding at a suitable point), and more surprisingly, also to construct a good binary CPE model (by calibrating the scores of the ranking model).

See Also:

Download slides icon Download slides: machine_narasimhan_binary_classification_01.pdf (201.5┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: