Multiclass Learning Approaches: A Theoretical Comparison with Implications

author: Amit Daniely, Einstein Institute of Mathematics, The Hebrew University of Jerusalem
published: Jan. 14, 2013,   recorded: December 2012,   views: 2859


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We theoretically analyze and compare the following five popular multiclass classification methods: One vs. All, All Pairs, Tree-based classifiers, Error Correcting Output Codes (ECOC) with randomly generated code matrices, and Multiclass SVM. In the first four methods, the classification is based on a reduction to binary classification. We consider the case where the binary classifier comes from a class of VC dimension d, and in particular from the class of halfspaces over \reals d. We analyze both the estimation error and the approximation error of these methods. Our analysis reveals interesting conclusions of practical relevance, regarding the success of the different approaches under various conditions. Our proof technique employs tools from VC theory to analyze the \emph{approximation error} of hypothesis classes. This is in sharp contrast to most, if not all, previous uses of VC theory, which only deal with estimation error.

See Also:

Download slides icon Download slides: machine_daniely_learning_01.pdf (156.1 KB)

Download article icon Download article: machine_daniely_learning_01.pdf (240.1 KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: