Sinkhorn Distances: Lightspeed Computation of Optimal Transport

author: Marco Cuturi, Graduate School of Informatics, Kyoto University
published: Nov. 7, 2014,   recorded: January 2014,   views: 54
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Optimal transportation distances are a fundamental family of parameterized distances for histograms in the probability simplex. Despite their appealing theoretical properties, excellent performance and intuitive formulation, their computation involves the resolution of a linear program whose cost is prohibitive whenever the histograms' dimension exceeds a few hundreds. We propose in this work a new family of optimal transportation distances that look at transportation problems from a maximum-entropy perspective. We smooth the classical optimal transportation problem with an entropic regularization term, and show that the resulting optimum is also a distance which can be computed through Sinkhorn's matrix scaling algorithm at a speed that is several orders of magnitude faster than that of transportation solvers. We also report improved performance on the MNIST benchmark problem over competing distances.

See Also:

Download slides icon Download slides: machine_cuturi_sinkhorn_distances_01.pdf (226.0┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: