Approximate inference in latent Gaussian-Markov models from continuous time observations

author: Botond Cseke, School of Informatics, University of Edinburgh
published: Nov. 7, 2014,   recorded: January 2014,   views: 1863
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We propose an approximate inference algorithm for continuous time Gaussian-Markov process models with both discrete and continuous time likelihoods. We show that the continuous time limit of the expectation propagation algorithm exists and results in a hybrid fixed point iteration consisting of (1) expectation propagation updates for the discrete time terms and (2) variational updates for the continuous time term. We introduce corrections methods that improve on the marginals of the approximation. This approach extends the classical Kalman-Bucy smoothing procedure to non-Gaussian observations, enabling continuous-time inference in a variety of models, including spiking neuronal models (state-space models with point process observations) and box likelihood models. Experimental results on real and simulated data demonstrate high distributional accuracy and significant computational savings compared to discrete-time approaches in a neural application.

See Also:

Download slides icon Download slides: machine_cseke_time_observations_01.pdf (190.4┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: