Adaptive Anonymity via b-Matching

author: Krzysztof M. Choromanski, Research at Google, Google, Inc.
published: Nov. 7, 2014,   recorded: January 2014,   views: 1778
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

The adaptive anonymity problem is formalized where each individual shares their data along with an integer value to indicate their personal level of desired privacy. This problem leads to a generalization of k-anonymity to the b-matching setting. Novel algorithms and theory are provided to implement this type of anonymity. The relaxation achieves better utility, admits theoretical privacy guarantees that are as strong, and, most importantly, accommodates a variable level of anonymity for each individual. Empirical results confirm improved utility on benchmark and social data-sets.

See Also:

Download slides icon Download slides: machine_choromanski_adaptive_anonymity_01.pdf (306.8┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: