Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model

author: Sander M. Bohte, Centrum Wiskunde & Informatica (CWI)
published: Jan. 14, 2013,   recorded: December 2012,   views: 3009


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Neural adaptation underlies the ability of neurons to maximize encoded information over a wide dynamic range of input stimuli. While adaptation is an intrinsic feature of neuronal models like the Hodgkin-Huxley model, the challenge is to integrate adaptation in models of neural computation. Recent computational models like the Adaptive Spike Response Model implement adaptation as spike-based addition of fixed-size fast spike-triggered threshold dynamics and slow spike-triggered currents. Such adaptation has been shown to accurately model neural spiking behavior over a limited dynamic range. Taking a cue from kinetic models of adaptation, we propose a multiplicative Adaptive Spike Response Model where the spike-triggered adaptation dynamics are scaled multiplicatively by the adaptation state at the time of spiking. We show that unlike the additive adaptation model, the firing rate in the multiplicative adaptation model saturates to a maximum spike-rate. When simulating variance switching experiments, the model also quantitatively fits the experimental data over a wide dynamic range. Furthermore, dynamic threshold models of adaptation suggest a straightforward interpretation of neural activity in terms of dynamic signal encoding with shifted and weighted exponential kernels. We show that when thus encoding rectified filtered stimulus signals, the multiplicative Adaptive Spike Response Model achieves a high coding efficiency and maintains this efficiency over changes in the dynamic signal range of several orders of magnitude, without changing model parameters.

See Also:

Download slides icon Download slides: machine_bohte_model_01.pdf (473.7 KB)

Download article icon Download article: machine_bohte_model_01.pdf (2.5 MB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: