Multiview Clustering via Canonical Correlation Analysis

author: Karen Livescu, Toyota Technological Institute at Chicago
published: Dec. 20, 2008,   recorded: December 2008,   views: 7305


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Clustering algorithms such as k-means perform poorly when the data is highdimensional. A number of efficient clustering algorithms developed in recent years address this problem by projecting the data into a lower-dimensional subspace, e.g. via principal components analysis (PCA) or random projections, before clustering. Such techniques typically require stringent requirements on the separation between the cluster means. Here we present ongoing work on projection-based clustering that addresses this using multiple views of the data. We use canonical correlation analysis (CCA) to project the data in each view to a lower-dimensional subspace. Under the assumption that the correlated dimensions capture the information about the cluster identities, the separation conditions required for the algorithm to be successful are significantly weaker than those of prior results in the literature. We describe experiments on two domains, (a) speech audio and images of the speakers’ faces, and (b) text and links in Wikipedia articles. We discuss several issues that arise when clustering in these domains, in particular the existence of multiple possible “cluster variables” and of a hierarchical cluster structure.

See Also:

Download slides icon Download slides: lms08_livescu_mvc_01.pdf (267.3 KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: