Feature Selection - From Correlation to Causality

author: Isabelle Guyon, Clopinet
published: Dec. 20, 2008,   recorded: December 2008,   views: 863
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available. These areas include text processing of internet documents, gene expression array analysis, and combinatorial chemistry. The ob jective of variable selection is three-fold: improving the prediction performance of the predictors, providing faster and more cost-effective predictors, and providing a better understanding of the underlying process that generated the data. This tutorial will cover a wide range of aspects of such problems: providing a better definition of the ob jective function, feature construction, feature ranking, multivariate feature selection, efficient search methods, and feature validity assessment methods. Most feature selection methods do not attempt to uncover causal relationships between feature and target and focus instead on making best predictions. We will examine situations in which the knowledge of causal relationships benefits feature selection. Such benefits may include: explaining relevance in terms of causal mechanisms, distinguishing between actual features and experimental artifacts, predicting the consequences of actions performed by external agents, and making predictions in non-stationary environments.

See Also:

Download slides icon Download slides: lkasok08_guyon_fsfc_01.ppt (952.0 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: