Parameter estimation using moment-closure methods

author: Colin Gillespie
published: April 17, 2008,   recorded: March 2008,   views: 4304
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

This poster will give tackle one of the key problems in the new science of systems biology: inference for the rate parameters underlying complex stochastic kinetic biochemical network models, using partial, discrete, and noisy time-course measurements of the system state. Although inference for exact stochastic models is possible, it is computionally intensive for relatively small networks. We explore Bayesian estimation of stochastic kinetic rate parameters using approximate models, based on moment closure analysis of the underlying stochastic process. By assuming a Gaussian distribution and using moment-closure estimates of the first two-moments, we can greatly increase the speed of parameter inference. The parameter space can be efficiently explored by embedding this approximation into an MCMC procedure.

See Also:

Download slides icon Download slides: licsb08_gillespie_peu_01.pdf (582.4┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Reviews and comments:

Comment1 JeongMin. Lee, September 17, 2009 at 12:30 p.m.:

Thank You!

Write your own review or comment:

make sure you have javascript enabled or clear this field: