
0.25
0.5
0.75
1.25
1.5
1.75
2
Modern String Theory Confronts Particle Physics and Black Holes
Published on 2017-05-222380 Views
String theory, as the prime candidate for quantum unification of particle physics and gravity, sheds light on important fundamental questions of theoretical physics such as the microscopic structure o
Related categories
Presentation
Modern String Theory Confronts Particle Physics & Black Holes00:00
Quests to uncover underlying principles of fundamental interactions02:09
Outline03:20
I. Theory of Elementary Particles based on Quantum Field Theory05:03
Standard Model (of electro-weak and strong interactions)05:37
II. Gravity as classical theory: Einstein Theory of Gravity07:22
Einstein Theory of Gravity is relevant for cosmological questions of the Early Universe08:07
Einstein’s Theory predicts Black Holes08:42
Gravity as Quantum Field Theory10:39
Quark12:09
Graviton12:58
Quantum interactions14:03
Things seems to be in place15:52
Demand that extra dimensions17:27
The role of extra dimensions18:51
D(irichlet)-branes20:10
II. Dual D-brane interpretation21:57
I. D-branes & Particle Physics23:36
D-branes25:03
Standard Model from D-branes26:19
Standard Models w/ Intersecting D-branes28:18
F-theory?30:17
F-theory compactification - 132:52
F-theory compactification - 235:20
F-theory -Motivation37:03
Past focus on F-theory with SU(5) Grand Unification38:51
Standard Model40:09
Recent efforts41:21
II. String Theory Insights into Black Holes42:33
D-branes & Black Holes44:07
D-branes as gravitational objects45:16
Approach explains microscopic origin of entropy47:43
Recent progress49:34
Concluding remarks51:42