OAG: Toward Linking Large-scale Heterogeneous Entity Graphs

author: Fanjin Zhang, Tsinghua University
published: March 2, 2020,   recorded: August 2019,   views: 3
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Linking entities from different sources is a fundamental task in building open knowledge graphs. Despite much research conducted in related fields, the challenges of linkinglarge-scale heterogeneous entity graphs are far from resolved. Employing two billion-scale academic entity graphs (Microsoft Academic Graph and AMiner) as sources for our study, we propose a unified framework—- LinKG—- to address the problem of building a large-scale linked entity graph. LinKG is coupled with three linking modules, each of which addresses one category of entities. To link word-sequence-based entities (e.g., venues), we present a long short-term memory network-based method for capturing the dependencies. To link large-scale entities (e.g., papers), we leverage locality-sensitive hashing and convolutional neural networks for scalable and precise linking. To link entities with ambiguity (e.g., authors), we propose heterogeneous graph attention networks to model different types of entities. Our extensive experiments and systematical analysis demonstrate that LinKG can achieve linking accuracy with an F1-score of 0.9510, significantly outperforming the state-of-the-art. LinKG has been deployed to Microsoft Academic Search and AMiner to integrate the two large graphs. We have published the linked results—-the Open Academic Graph (OAG)\footnote\urlhttps://www.openacademic.ai/oag/ , making it the largest publicly available heterogeneous academic graph to date.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: