TF-Ranking: Scalable TensorFlow Library for Learning-to-Rank

author: Rama Kumar Pasumarthi, Google, Inc.
published: March 2, 2020,   recorded: August 2019,   views: 5
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Learning-to-Rank deals with maximizing the utility of a list of examples presented to the user, with items of higher relevance being prioritized. It has several practical applications such as large-scale search, recommender systems, document summarization and question answering. While there is widespread support for classification and regression based learning, support for learning-to-rank in deep learning has been limited. We introduce TensorFlow Ranking, the first open source library for solving large-scale ranking problems in a deep learning framework. It is highly configurable and provides easy-to-use APIs to support different scoring mechanisms, loss functions and evaluation metrics in the learning-to-rank setting. Our library is developed on top of TensorFlow and can thus fully leverage the advantages of this platform. TensorFlow Ranking has been deployed in production systems within Google; it is highly scalable, both in training and in inference, and can be used to learn ranking models over massive amounts of user activity data, which can include heterogeneous dense and sparse features. We empirically demonstrate the effectiveness of our library in learning ranking functions for large-scale search and recommendation applications in Gmail and Google Drive. We also show that ranking models built using our model scale well for distributed training, without significant impact on metrics. The proposed library is available to the open source community, with the hope that it facilitates further academic research and industrial applications in the field of learning-to-rank.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: