STAMP: Short‑Term Attention/Memory Priority Model for Session‑based Recommendation

author: Yifu Zeng, University of Science and Technology of China
published: Nov. 23, 2018,   recorded: August 2018,   views: 666

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Predicting users’ actions based on anonymous sessions is a challenging problem in web-based behavioral modeling research, mainly due to the uncertainty of user behavior and the limited information. Recent advances in recurrent neural networks have led to promising approaches to solving this problem, with long short-term memory model proving effective in capturing users’ general interests from previous clicks. However, none of the existing approaches explicitly take the effects of users’ current actions on their next moves into account. In this study, we argue that a long-term memory model may be insufficient for modeling long sessions that usually contain user interests drift caused by unintended clicks. A novel short-term attention/memory priority model is proposed as a remedy, which is capable of capturing users’ general interests from the long-term memory of a session context, whilst taking into account users’ current interests from the short-term memory of the last-clicks. The validity and efficacy of the proposed attention mechanism is extensively evaluated on three benchmark data sets from the RecSys Challenge 2015 and CIKM Cup 2016. The numerical results show that our model achieves state-of-the-art performance in all the tests.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: