Decoupled Learning for Factorial Marked Temporal Point Processes

author: Lu Wang, East China Normal University
published: Nov. 23, 2018,   recorded: August 2018,   views: 0
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

This paper introduces the factorial marked temporal point process model and presents efficient learning methods. In conventional (multi-dimensional) marked temporal point process models, event is often encoded by a single discrete variable i.e. a marker. In this paper, we describe the factorial marked point processes whereby time-stamped event is factored into multiple markers. Accordingly the size of the infectivity matrix modeling the effect between pairwise markers is in power order w.r.t. the number of the discrete marker space. We propose a decoupled learning method with two learning procedures: i) directly solving the model based on two techniques: Alternating Direction Method of Multipliers and Fast Iterative Shrinkage-Thresholding Algorithm; ii) involving a reformulation that transforms the original problem into a Logistic Regression model for more efficient learning. Moreover, a sparse group regularizer is added to identify the key profile features and event labels. Empirical results on real world datasets demonstrate the efficiency of our decoupled and reformulated method. The source code is available online.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: